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CLUSTERING

The study of natural groupings in data
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A The study of natural groupings in data
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CLUSTERING

;
J The study of natural groupings in data

Supervised Learning Unsupervised Learning

Clust
Boundary s’ =27




CLUSTERING: Applications

Grouping similar news articles

itk
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Rajasthan crisis: Governer under
pressure from BJP, says Congress

= Ower 3. 300 coronavinus patients ‘untraceable”
in Bengaluru amid spike in cases

* Covid bed occupancy coming down, few
people need hospitalisation now: Kejriwal

* Coronavirus in india: Bodies of Covid patients
burnt in open in Patna
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* Kol —msance driver demands As 9.200
from cormonawvirus patients for 6-km journey to
hospital

SPORTS

IPL 2020's knock-on effect on UAE
economy will be huge: Kumar
Sangakkara

* it was about changing the momentum of
nnings: Stuan Broad on his 33-ball fifos
of §

S e
- spPO T -
host: lu S t c

Racisn aod burning issue for indians
and Sr Lankans: Kumar Sangalkkara

* Hawve never tho

]

* Ganguly has an astute cricket brain, he will be
a fair 1CC chief: Sangakkara

* if M5 Dhoni thinks he can still win matches for
india, he showld play: Gautam Gamblhir

* WwWhat's done is done: irfan Pathan lashes out
3t Stewe Bucknor over 2008 howlers

- D o

Covaxin enters human trials
at AnNME: All you need o
knosw

Rajasthan crisis explained in

10 pointc: From PiHot, Gehlor to
ED and Malinga

SUGGESTED STORIES
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MOVIES

AR Rahman: A gang in Bollywood is
spreading false rumours aboirt —

* Rajlumm = = nment

—: =2 on nepotism and celebrity culture

= Sonu Sood on e-Mind Rocks 20200 1| wasn't

TRENDING NEWS

Dr PK Mahanandi: The untouchable
boy who became art advisor for
Swedish government

* Lund University has had enough of iIndians on
Facebook

* Carryminatis YouTube account hacked,
hachker asks for bitooin donations

* Adorable video of elephant playing with its
hu n friend goes viral

WATCH RIGHT NOW

watch: Myderabad=s Osmaris
Hospital once again fiooded
after heavy rain

Assam floods: Nearly 27
people affected. 91 killed in
deluge

Dontt buy it from black
Aot Delhi CM Kejrivwal on
Operation Plasma Bazaar |
EXCLWUSIVE

WATCH: tndia’s coronavins
tally exceads 12 lakh

Why not Manesar hotel:
Chidambaram asks ED after
raids on Ashok Gehlot's
brother
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CLUSTERING: Applications

]{ Social network analysis
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CLUSTERING: Applications

Bioinformatics: Identifying disease subtypes, patient groups
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|CLUSTERING: Applications

Image segmentation




EEE———

- FEATURE-SPACE VS GRAPH CLUSTERING

AP N

Feature-space: k-Means Clustering

X & %nXd n samples, d features
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FEATURE—SPAC VS GRAPH CLUSTERING

 Feature-space: k-Means Clustering
X Gfg%nx“i n samples, d features
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FEATURE-SPACE VS GRAPH CLUSTERING

Feature-space: k-Means Clustering

..........

* But, what about high dimensions? 3
Disease subtyping: ~1,000 samples ~20,000 genes

Object recognition: 1024x1024 images -> ~1M pixels
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FEATURE-SPACE VS GRAPH CLUSTERING

Feature-space: k-Means Clustering

* But, what about high dimensions? 3
: Disease subtyping: ~1,000 samples ~20,000 genes
Object recognition: 1024x1024 images -> ~1M pixels

* In such high dimensions:
Data becomes geometrically sparse

Distance between nearby points roughly same as distance between
far away points

h........f’ ——
T < DTS
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FEATURE-SPACE VS GRAPH CLUSTERING

Handling non-lineartiy

Cluster assignment for k-Means Cluster assignment for spectral clustering
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FEATURE-SPACE VS GRAPH CLUSTERING |

Handling non-lineartiy

Cluster assignment for spectral clustering

| Cluster assignment for k-Means
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FEATURE-SPACE VS GRAPH CLUSTERING
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GRAPH BASED REPRESENTATION

FEATURE-SPACE BASED REPRESENTATION
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CE VS GRAPH CLUSTERING

Feature—space Graph

X € g%n0<d

Samples: n
Features/Dimension: d




FEATURE-SPACE VS FIGENSPACE CLUSTERING |

Feature—space

h
o e Sep
(@ XD =

X 6 an xd | W E %n XN

Gaussian similarity kernel

Samples: n Pairwise
Features/Dimension: d similarity

matrix




FEATURE—SPACE VS GRAPH CLUSTERING

Feature—space

h
s e H T — T H2 Grap
(@ XD =

X 6 an xd | W E %n XN

Gaussian similarity kernel

Samples: n A Pairwise
Features/Dimension: d SN AE similarity
S A matrix
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FEATURE—SPAC VS GRAPH CLUSTERING

Feature—space Graph
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FEATURE—SPACE VS GRAPH CLUSTERING

Feature—space Graph
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Clusters 1in dataset Strongly connected

components in graph

. Image: Barton, Tomas et al. “Chameleon 2.,” ACM Transactions on Knowledge Discovery from Data, vol. 13, pp. 1 - 27,
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2019.



Feature—space Graph
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Find a k-way partition of graph such that:

Edges between different Edges within a
components have very low component have high
weight weight
(points 1in different (points within same

clusters are dissimilar) cluster are similar)




W = [wij]an
cut W(A, B) := Z Wi
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THE GRAPH-CUT

W = [wij]an
cut W(A, B) :=

k-way cut:




W = [wz’j]an
cut W(A, B) := Z Wi

t€A,jeB

k-way cut: k
minimize cut(Aq, Ao, ..., Ax) := Y W(A4,,

=1l

* In many cases, mincut simply y
separates individual vertices
from rest of the graph




minimize cut(Aq, As, ..., Ax) = > W
=
Explicitly request subsets
to be “reasonably large”




THE GRAPH—CUT

minimize cut(Aq, Ao, ..., Ag) 1= Z W(A;, Ay)
g=1 :
Explicitly request subsets
to be “reasonably large”

degree of vertex v;: Z Wi

size of subset: vol(A4;) := Z d;
1€A




THE GRAPH—CUT

minimize cut(Aq, Ao, ..., Ag) 1= Z W(A;, Ay)
g=1 :
Explicitly request subsets
to be “reasonably large”

degree of vertex v;: Z Wi ==X

size of subset: vol(A4;) := Z d;
1€A

Normalized cut

minimize Ncut(Aq, Ao, ..., Ag) := ) W(Aiﬂ;{i)
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SOLVING THE GRAPH-CUT
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SOLVING THE GRAPH-CUT

k

minimize Ncut(Aq, Ao, ..., Ax) == > %ﬁf)i) B

1=

7
W(A,B)  W(B,A) A v
vol(A) vol(B) a1 s s

Solving 2-way cut

minimize Ncut(A, B) :=
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" SOLVING THE GRAPH-CUT

i . ) \
' minimize Neut(Aq, Ag, ..., A) = 3 Llidi) }

vol(Aj) B }

7=l
| Solving 2-way cut

i A B B A A o :- ' |
- minimize Ncut(A4, B) := W\//(()I(EA)) + W\/fc()l(iB)) /f -- % i w

| aRE

: \} Reduces to
|

|

|

' 1

: .. . 2'D72(D-W)D~
| minimize T
| zER" RN

| such that z? (D% 1) =0

N

| Jianbo Shi and J. Malik, "Normalized cuts and image segmentation," in IEEE Transactions on Pattern Analysis and Machine
| Intelligence, vol. 22, no. 8, pp. 888-905, Aug. 2000, doi: 10.1109/34.868688. |
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minimize T
ZERT i 2

such that z% (D% 1) =0

W =Pairwise-similarity matrix of size n X n

D = . Degree matrix




TD (D —-W)D 22

minimize T
ZERT i 2
1

such that z% (D§ 1) =0

The normalized graph Laplacian

; L=D z(D-W)D :



SOLVING THE GRAPH—CUT

... ZTDz2(D-W)D:
minimize

ZER™ 2T~
1

such that z% (D§ 1) =0

The normalized graph Laplacian
L=D :(D-W)D 2
® Symmetric positive semi-definite
vILov>0,Yv e R, v+£0
all the eigenvalues are > 0

eD=1 is an eigenvector of L with eigenvalue 0



SOLVING THE GRAPH—CUT

D 2 (D—-W)D =z
2T~
such that z% (D% 1) = ()

minimize
ZERT

The normalized graph Laplacian
L=D :(D-W)D 2
® Symmetric positive semi-definite
vILov>0,Yv e R, v+£0
all the eigenvalues are > 0

eD=1 is an eigenvector of L with eigenvalue 0

\
|
|
Rayleigh quotient: \
|
\
|
\

Let A be a real symmetric matrix

Constraint: v is orthogonal to j — 1
smallest eigenvectors vy, ...,v;_1, the
_ vl Av ‘

quotient —

viv

is minimized by next smallest
eigenvector v; and eigenvalue A;

G.H. Golub and C.F. Van Loan, “Matrix
Computations,” John Hopkins Press, 1989.



SOLVING THE GRAPH—CUT

D 2 (D—-W)D =z

minimize
ZERN g M7 W N o Ny
~~~~~~ Minimized by:
h that 27 (D31) =0 o -
suc at z = second smallest eigenvector

. of L and its eigenvalue
The normalized graph Laplacian

|
| |
| |
|
|
| |
| |
|
|
| \
| |
|
|
| \
| |
; L=D :(D-W)D 2
e Symmetric positive semi-definite
i vILv > 0,Yv € R", v #0 1
: all the eigenvalues are > 0
|

|
| |
| |
|

|
| |
| |

eD=1 is an eigenvector of L with eigenvalue 0
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SOLVING THE GRAPH-CUT

such that z7 (D% 1) =>(}

Lz

minimize
zER"
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Lz

minimize

) T, such that z7 (D%l) =>(}

Eigen decomposition L = UXU”

(arranged in
ascending order)
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SOLVING THE GRAPH-CUT

I P
: minimaize T
| zERN 2

such that z7 (D% 1) =>(}

| Eigen decomposition L = UXU”




SOLVING THE GRAPH-CUT

Solving k-way cut

minimize Ncut(Aq, Ao, ..
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SOLVING THE GRAPH-CUT

Solving k-way cut

k -
minimize Ncut(Aq, Ao, ..., Ax) := ) W(Ai,Aq)
i=1

VOl(Ai)

such that U € > UTU =1,

|
|
|
|
|
|
|
|
|
i
i minimize trace(U 1u )
|
|
|
|
|
|
|
|
|
|
|
|
|
|

U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395-416, 2007.
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SOLVING THE GRAPH-CUT

- Solving k-way cut

| k =
- minimize Ncut(Aq, Ao, ..., Ax) := > V‘ifi‘?(’x{)i) }
| — i=1 1 ‘

; minimize trace(U' LU) =5 \(L) !

| - [Ky-Fan theorem]
l such that U € R"* UTU =1, = 1

| [J* — Eigenvectors corresponding to ‘
| — k smallest eigenvalues of L T

| Fan, K. “On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II.” Proceedings of the National |
| Academy of Sciences of the United States of America vol. 36, no. 1, pp. 31-35, 1950. |




Solving k-way cut

] k _
minimize Ncut(Aq, Ao, ..., Ax) := ) W(Ai,{lz')

- =1

such that U € R"* UTU =1,
Eigen decomposition L = UXUT

l

|
|
|
|
|
|
|
|
|
i
i minimize trace(U LU )
i
|
|
|
|
|
|
|
|
|
|
|
|
|
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SOLVING THE GRAPH-CUT

~ Solving k-way cut

k
. minimize Ncut(Aq, Ag, ..., Ag) := Z V‘ifiﬁx‘l))
= = ‘

: minimize trace(U* LU)
i such that U € > UTU =1,
| Eigen decomposition L = UXU*

l l 27 1
: 4 |
l |
l |




. F. R. Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.




SPECTRAL CLUSTERING

why the word “Spectral”?

« Derieved from “spectrum”

. RERSRRE Chung Spectral graph theory. American Mathematical Society, no. 92, 1997.
Bes 4




|| W

SPECTRAL CLUSTERING

why the word “Spectral”?
* Derieved from “spectrum”

* Eigenvalues of a matrix are called its spectrum

F. R. Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.




SPEC T RA L CLUSTERING

why the word “Spectral”?
* Derieved from “spectrum”
* Eigenvalues of a matrix are called its spectrum

* Here, clustering solutions are obtained from
eigenvalues and eigenvectors of some matrix L

18 o T8 Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.
4
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SPEC T RA L CLUSTERING

why the word “Spectral”?
* Derieved from “spectrum”
* Eigenvalues of a matrix are called its spectrum

* Here, clustering solutions are obtained from
eigenvalues and eigenvectors of some matrix L

* Clustering using spectrum of L

))'

“Spectral Clustering

18 o T8 Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.
4
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S PECTR AL CLUSTERING ALGORITHM

Normalized spectral clustering by Ng, Jordan, and Weiss (2002)
Input Similarity matrix W, number of clusters k. :
Output Clusters A4, ..., Ag.
1. Construct degree matrix D and normalized Laplacian L = D™z (D—W)D™ 2
2. Find eigenvectors U = [u; ... ux| corresponding to k smallest eigenvalues of
matrix L. ‘
3. Perform clustering on the rows of U using k-means algorithm. ‘
Return clusters Aq, ..., A; from k-means clustering.

I Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Proc. Advances
. in Neural Information Processing Systems, pp. 849-856, 2002.
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SPECTRAL CLUSTERING
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SPECTRAL CLUSTERING
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SPECTRAL CLUSTERING
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W and Laplacian L € R™**"

k — means clustering on low-rank U < ______ Eigenvectors U € §<¥




SPECTRAL CLUSTERING

We will study the
| performance of spectral
clustering in lab session.
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