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Bioinformatics: Identifying disease subtypes, patient groups

Clustering: Applications



  

 
Image segmentation

Clustering: Applications
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● But, what about high dimensions?
Disease subtyping: ~1,000 samples   ~20,000 genes
Object recognition: 1024x1024 images -> ~1M pixels

 
 

   

  Feature-space: k-Means Clustering
 

   



  

  Feature-space vs Graph Clustering  
 

● But, what about high dimensions?
Disease subtyping: ~1,000 samples   ~20,000 genes
Object recognition: 1024x1024 images -> ~1M pixels

● In such high dimensions:
Data becomes geometrically sparse
Distance between nearby points roughly same as distance between 
far away points 
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  Feature-space vs Graph Clustering 
   Feature-space based Representation

Graph based representation

   



  

  Feature-space vs Graph Clustering 
Feature-space Graph

Samples: n
Features/Dimension: d
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Feature-space Graph
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Gaussian similarity kernel

Pairwise 
similarity
matrix



  

  Feature-space vs Graph Clustering 
Feature-space Graph

Samples: n
Features/Dimension: d

Gaussian similarity kernel

Pairwise 
similarity
matrix

weighted
adjacency
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Clusters in dataset



  

  Feature-space vs Graph Clustering 
Feature-space Graph

Image: Barton, Tomás et al. “Chameleon 2.,” ACM Transactions on Knowledge Discovery from Data, vol. 13, pp. 1 – 27, 2019.

Clusters in dataset Strongly connected 
components in graph



  

  Feature-space vs Graph Clustering 
Feature-space Graph

Graph-cut problem



  

  The Graph-Cut 
Find a k-way partition of graph such that:

Edges between different 
components have very low 

weight

(points in different 
clusters are dissimilar)

Edges within a 
component have high 

weight

(points within same 
cluster are similar)
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k-way cut: 



  

  The Graph-Cut 

k-way cut: 

● In many cases, mincut simply 
separates individual vertices 

from rest of the graph
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Explicitly request subsets 
to be “reasonably large”
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  The Graph-Cut 

Explicitly request subsets 
to be “reasonably large”

Normalized cut



  

  Solving  the Graph-Cut 
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Solving 2-way cut
B

A

vol(A)

vol(B)



  

  Solving  the Graph-Cut 

Solving 2-way cut

Reduces to

B

A

vol(A)

vol(B)

Jianbo Shi and J. Malik, "Normalized cuts and image segmentation," in IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 22, no. 8, pp. 888-905, Aug. 2000, doi: 10.1109/34.868688.
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  Solving  the Graph-Cut 

The normalized graph Laplacian

● Symmetric positive semi-definite

Rayleigh quotient:

G.H.   Golub   and   C.F.   Van  Loan, “Matrix   
Computations,” John Hopkins Press, 1989.



  

  Solving  the Graph-Cut 

The normalized graph Laplacian

● Symmetric positive semi-definite
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  Solving  the Graph-Cut 

(arranged in 
ascending order)
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Solving k-way cut



  

  Solving  the Graph-Cut 
Solving k-way cut

U. Von Luxburg,“A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395–416, 2007.



  

  Solving  the Graph-Cut 
Solving k-way cut

Fan, K. “On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II.” Proceedings of the National 
Academy of Sciences of the United States of America vol. 36, no. 1, pp. 31-35, 1950.

Eigenvectors corresponding to 
k smallest eigenvalues of L

[Ky-Fan theorem]
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Solving k-way cut



  

  Spectral Clustering
Why the word “Spectral”?

F. R. Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.
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  Spectral Clustering

F. R. Chung, Spectral graph theory. American Mathematical Society, no. 92, 1997.

Why the word “Spectral”?

● Derieved from “spectrum”

● Eigenvalues of a matrix are called its spectrum

● Here, clustering solutions are obtained from 
eigenvalues and eigenvectors of some matrix L

● Clustering using spectrum of L

“Spectral Clustering”!



  

  Spectral Clustering Algorithm

A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Proc. Advances 
in Neural Information Processing Systems, pp. 849–856, 2002.



  

  Spectral Clustering 
Feature-space



  

  Spectral Clustering 
Feature-space Graph

similarity 
measure



  

  Spectral Clustering 
Feature-space Graph

similarity 
measure



  

  Spectral Clustering

We will study the 
performance of spectral 

clustering in lab session.



  

  Thank   You
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