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Adaptively construct the joint subspace  

from individual subspaces 
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Proposed Algorithm 

Joint Principal Components: 
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 2 real-life cancer data sets from TCGA 

 Modalities:  

– Gene Expression, DNA methylation,  miRNA, 
Protein, CNV 

 Giloblastoma Multiforme (GBM):  

– 168 samples,  4534 features,  4 clusters 

 Kidney cancer (KIDNEY):  

– 737 samples, 5979 features,  3 clusters  

 Compared with:   

o BCC [2], COCA [3]   

o iCluster [4], LRAcluster [5], PCA-NI  

 External Indices: F-measure,  NMI 

 Survival Analysis: p-value in log-rank test [7]  

 
 



RESULTS 

KIDNEY ordering: 

Gene>miRNA>DNA>CNV>Protein 

GBM ordering: 

Gene>CNV>miRNA 
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RESULTS III 



Survival Analysis 

KIDNEY GBM 

6.3 years 1.72 years 

0.94 years 

0.98 years 

0.92 years 

Kaplan-Meier survival plots with median survival time  



 Constructs low-rank joint subspace from individual subspaces 

 Evaluates relevance and mutual information before naïve integration 

 Filters out noisy and inconsistent modalities 

 Computationally efficient 

 

Future Work 

 Dimensionality increases linearly with  number of modalities 

 Update subspace instead appending 

 Effective rank estimation techniques 

Conclusion 
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