3rd International Conference On Computational Intelligence And Networks

PRINCIPAL SUBSPACE UPDATION FOR INTEGRATIVE CLUSTERING OF

MULTIMODAL OMICS DATA

28 OCTOBER 2017

APARAJITA KHAN and PRADIPTA MAJI MACHINE INTELLIGENCE UNIT INDIAN STATISTICAL INSTITUTE KOLKATA, INDIA.

Outline

> Multimodal Data Integration

- ➢ Existing Approaches
- ➢ Principal Subspace
- ► Relevance and Concordance
- ➢ Proposed Algorithm
- ➢ Results and Survival Analysis
- ➤ Conclusion

Multimodal Data Integration

Existing Approaches

2 Stage Approaches:

Existing Approaches

- Relevance of individual modalities
- Concordance between modalities

Relevance and Concordance

Proposed Algorithm

Computational complexity is $O(Mn^2d_{max})$.

- 2 real-life cancer data sets from TCGA
- Modalities:
 - Gene Expression, DNA methylation, miRNA, Protein, CNV
- Giloblastoma Multiforme (GBM):
 - 168 samples, 4534 features, 4 clusters
- Kidney cancer (KIDNEY):
 - 737 samples, 5979 features, 3 clusters
- Compared with:
 - BCC [2], COCA [3]
 - o iCluster [4], LRAcluster [5], PCA-NI
- External Indices: F-measure, NMI
- Survival Analysis: p-value in log-rank test [7]

RESULTS

Relevance of Each Modality and Selected Modalities

Kidney

Different	Kidney		GBM	
Modality	Relevance \mathcal{R}_l	Selected	Relevance \mathcal{R}_l	Selected
CNV	0.2552738		0.2371261	
DNA	0.3840580	Gene	-	Gene
Gene	0.5172488	miRNA	0.2958170	CNV
miRNA	0.4014777	DNA	0.2196443	
Protein	0.2430872		-	

KIDNEY ordering: Gene>miRNA>DNA>CNV>Protein

RESULTS II

RESULTS III

Survival Analysis

Kaplan-Meier survival plots with median survival time

KIDNEY

GBM

Conclusion

- Constructs low-rank joint subspace from individual subspaces
- > Evaluates relevance and mutual information before naïve integration
- Filters out noisy and inconsistent modalities
- Computationally efficient

Future Work

- $\hfill\square$ Dimensionality increases linearly with number of modalities
- Update subspace instead appending
- □ Effective rank estimation techniques

References

- H. Zha, X. He, C. Ding, H. Simon, and M. Gu, "Spectral relaxation for k-means clustering," in Neural Information Processing Systems, vol. 14, (Vancouver, Canada), pp. 1057 - 1064, 2001.
- 2. E. F. Lock, et al., "Bayesian consensus clustering," Bioinformatics, no. 29(20), pp. 2610–2616, 2013.
- 3. K. A. Hoadley, C. Yau, et al., "Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin," Cell, vol. 158, pp. 929–944, 2014.
- R. Shen, A. B. Olshen, and M. Ladanyi, "Integrative clustering of multiple genomic data types using joint latent variable model with application to breast and lung cancer subtype analysis," Bioinformatics, no. 25(22), pp. 2906–2912, 2009.
- 5. D. Wu, D. Wang, et al., , "Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: Application to cancer molecular classification," BMC Genomics, 2015.
- 6. D. W. Hosmer, S. Lemeshow, and S. May, Applied Survival Analysis: Regression Modeling of Time to Event Data. New York, NY, USA: Wiley-Interscience, 2nd ed., 2008.
- P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," Journal of Computational and Applied Mathematics, vol. 20, pp. 53 – 65, 1987.

THANK YOU!

Questions?